编者寄语

当今世界正经历百年未有之大变局,新一轮科技革命与社会变革深度融合带来的深度、广度和力度前所未有。正如习近平总书记于2021年5月28日在中国科学院第二十次院士大会、中国工程院第十五次院士大会、中国科学技术协会第十次全国代表大会上的重要讲话中指出:"当前,新一轮科技革命和产业变革突飞猛进,科学研究范式正在发生深刻变革,学科交叉融合不断发展,科学技术和经济社会发展加速渗透融合。”而社会计算正是科学技术与经济社会发展高度融合的典型代表。

本期焦点依托于CCF数字图书馆,从中遴选了2个报告视频和8个会刊的27篇文章,涉及社会计算综述与前沿、空间智能与计算城市科学、数据与算法智能、计算社会科学、计算传播、隐私计算与安全等方向,共同反映了以社会计算为基础的空间智能、数据智能和数据治理等方面的前沿研究。在数据科学与人工智能的推动下,社会计算在不断深化和开拓原有研究范围的同时,必然会随着数字技术和经济社会的发展而转型。希望本专题能够给相关读者带来一些思想上的启迪和研究上的帮助,促进社会计算相关领域的发展和应用。

目录

资料格式

“智慧教育”专题

社会计算综述与前沿

面向网络文本的社会情感分析研究进展

根据主体的类型的不同,情感可分为个人情感、集体情感和社会情感。社会情感是指社会成员对事物所产生的合成情感。例如,针对新冠病毒,广大群众的情感如何?很显然,了解这些信息对于正确的舆情认知与有效的舆论引导很有帮助。报告针对互联网时代下海量的网络文本,围绕情感分析,介绍近些年我们在社会情感分析方面的研究进展。报告主要包括三个部分内容:1)基于情绪关系约束的社会情感检测;2)基于主题可解释的神经社会情感检测;3)基于层级状态的神经社会情感检测。

格式:
视频
在跨学科交叉融合中深发展社会计算与社会智能

数智化的时代背景为社会计算与社会智能的发展创造了新机遇,跨学科交叉融合将是其深化发展的必然之路。文中阐述了社会计算的内涵与外延,探讨了社会计算的范式转移、社会计算与社会智能的发展,由此对数智化时代的社会计算与社会智能进行了展望,提出了构建基于新型基础建设的社会智能体系的三大支柱,包括构建大规模高时变的数据智能、融合多尺度伸缩的空间智能、形成复杂适应性的社会智能。数据智能、空间智能和社会智能呈现出层次递进关系,要求数据、计算和社会的三者交织,这也要求计算科学、数据科学、空间科学、复杂科学、社会科学等多学科多领域在理论与方法上交叉融合。随着数智化技术的快速更新及其在社会经济系统中的不断渗透,社会计算与社会智能必然会在跨学科交叉融合中寻找突破与深发展。

格式:
文章
大数据驱动的社会经济地位分析研究综述

一个人的社会经济地位(Socioeconomic Status,SES)是结合经济学和社会学等因素相对于其他人的经济和社会地位的总体衡量,包含其职业、学历、收入等多维度信息。对这些信息进行综合评估可以帮助政府和相关机构制定各种政策、决策(如政府制定社会政策、企业进行广告个性化服务等),因此该研究得到了研究人员的广泛关注。随着近几年大数据技术和机器学习的发展,以数据驱动的方法来评估社会经济地位时,可以通过融合多维数据和利用各种算法来自动评估人们的社会经济地位,解决传统方法数据采集困难、成本过高的问题。文中旨在概述近年来将大数据技术应用于社会经济地位分析的相关研究进展。首先介绍社会经济地位的基本概念,并讨论大数据方法与传统方法所带来的不同挑战;然后,根据学习过程中的信息,系统性地总结各种相关方法,并详细讨论各类方法的利弊;最后,讨论目前个人社会经济地位分析存在的挑战和问题,并展望未来的相关研究方向。

格式:
文章
社交网络中意见领袖挖掘方法综述

意见领袖是指在消息传播过程中,对大众具有较大的引导力和影响力,直接或间接地影响大众观点的倾向与形成的那些人。社交网络中的意见领袖挖掘在商业营销、政策宣传、舆情监控、社会公共问题等领域有着非常重要的应用价值。首先阐述了意见领袖的起源、定义和分类。随后较为全面地总结了当前的意见领袖挖掘方法,将其归结为四类:基于用户评分规则的方法、基于社交网络图的方法、基于影响传播模型的方法、多维度融合的方法。分别阐述了上述方法的基本思想及其关键技术,分析了各种方法的优缺点。此外,对已有的评价指标进行分析总结,给出了推荐使用的评价指标。最后,探讨了三个未来的研究方向:使用图神经网络的聚类挖掘方法以提高挖掘效率和效果,设计动态模型以满足对时间更加敏感的应用场景,划分意见领袖等级以满足不同层次需求。

格式:
文章
基于事件社会网络推荐系统综述

基于事件社会网络(event-based social network,简称EBSN)是一种结合了线上网络和线下网络的新型社会网络,近年来得到了越来越多的关注,已有许多国内外重要研究机构的研究者对其进行研究并取得了许多研究成果.在EBSN推荐系统中,一个重要的任务就是设计出更好、更合理的推荐算法以提高推荐精确度和用户满意度,其关键在于充分结合EBSN中的各种上下文信息去挖掘用户、事件和群组的隐藏特征.主要对EBSN推荐系统的最新研究进展进行综述.首先,概述EBSN的定义、结构、属性和特征,介绍EBSN推荐系统的基本框架,并分析EBSN推荐系统与其他推荐系统的区别;其次,对EBSN推荐系统的主要推荐方法和推荐内容进行归纳、总结和对比分析;最后,分析EBSN推荐系统的研究难点及其发展趋势,并给出总结.

格式:
文章

空间智能与计算城市科学

时空智能与智慧城市

随着移动终端和各种位置传感器的普及,时空大数据无处不在并以前所未有的速度产生。城市时空大数据影响到人们日常生活的方方面面,例如定位导航、交通出行、社交活动、旅游、推荐等,并为政府和企业实施智慧城市建设提供了重要的数据支撑。如何采用人工智能技术对时空大数据进行有效管理、实时分析、知识发现、智能决策,正日益成为学界和工业界的研究热点。本论坛着眼于时空数据智能及其在智慧城市中的应用,拟邀请学界和工业界相关专家学者针对时空数据智能管理、时空数据智能分析、基于时空智能的智慧城市引擎建设、时空智能与城市计算等话题做高水平学术报告,为时空数据智能分析和智慧城市相关领域的专家学者提供学习、交流、研讨的平台。

格式:
视频
地理社交网络中基于多目标组合优化的空间感知影响力联合最大化

影响力最大化问题旨在从社交网络中寻找若干具有高影响力的用户节点(种子),以触发最大化的信息传播规模.目前绝大多数工作认为社交网络中所有用户都拥有相同的影响力推广价值.然而,在基于位置的营销活动中,影响力推广的主体通常为带有位置标签的空间对象,考虑到用户在物理世界中的移动受限问题,空间对象仅能吸引其邻近范围内的潜在用户.因此,为了最大化市场营销潜力,商家通常需要同时拥有多个营销目标,譬如,连锁店企业对旗下的多家门店进行联合推广.不同的推广内容以及不同的影响力种子选择都将对营销推广的效益产生切实的影响.鉴于此,综合考虑商家在营销过程中对推广门店位置的选择以及在线上部署影响力传播种子的策略,在地理社交网络中研究基于多目标组合优化的空间感知影响力联合推广问题.首先分析了问题的理论难度,阐明了其与传统影响力最大化问题的区别.为支持高效且准确的问题求解,根据用户推广权重的差异,拓展了现有反向影响力采样(reverse influence sampling, RIS)技术,对不同位置和种子组合下的影响力传播收益进行理论保证下的上下界评估,并基于此提出了迭代处理算法框架,在多个轮次下实现高置信度保障的近似最优求解.最后,通过多组真实数据集上的实验,证明了所研究问题能在多目标组合下有效地提升空间感知的影响力推广效果,并验证了所提出算法的良好性能.

格式:
文章
基于POI数据的城市场景细粒度制图

场景:是城市文化、意义、情感等的外化符号,是一个超越城市物理空间的概念。知识经济时代背景下,城市场景描述了由不同舒适物组合所产生的蕴含文化、价值观和生活方式的抽象概念,是吸引高级人力资本聚集的内生动力。因此,准确把握城市场景的状态和空间分布是城市发展的一个重要维度。目前,一些研究基于官方商业编码或大众点评等数据开展了基于城市或区域尺度的城市场景制图。文中利用大数据方法,基于POI数据构建了用于城市场景细粒度制图的方法框架,并衡量了深圳城市场景的细粒度分布状态。结果显示,深圳的主要场景特征为企业、正式、爱炫、时尚和逾越;同时,深圳主要呈现出3种场景模式,分别主要来自工作、居住和创意娱乐空间。总体而言,所提方法框架能有效地探测细粒度的城市场景,有利于深刻理解和准确识别城市场景,并为城市发展带来启发。

格式:
文章

数据与算法智能

Exploiting Structural and Temporal Influence for Dynamic Social-Aware Recommendation

Recent years have witnessed the rapid development of online social platforms, which effectively support the business intelligence and provide services for massive users. Along this line, large efforts have been made on the socialaware recommendation task, i.e., leveraging social contextual information to improve recommendation performance. Most existing methods have treated social relations in a static way, but the dynamic influence of social contextual information on users' consumption choices has been largely unexploited. To that end, in this paper, we conduct a comprehensive study to reveal the dynamic social influence on users' preferences, and then we propose a deep model called Dynamic Social-Aware Recommender System (DSRS) to integrate the users' structural and temporal social contexts to address the dynamic socialaware recommendation task. DSRS consists of two main components, i.e., the social influence learning (SIL) and dynamic preference learning (DPL). Specifically, in the SIL module, we arrange social graphs in a sequential order and borrow the power of graph convolution networks (GCNs) to learn social context. Moreover, we design a structural-temporal attention mechanism to discriminatively model the structural social influence and the temporal social influence. Then, in the DPL part, users' individual preferences are learned dynamically by recurrent neural networks (RNNs). Finally, with a prediction layer, we combine the users' social context and dynamic preferences to generate recommendations. We conduct extensive experiments on two real-world datasets, and the experimental results demonstrate the superiority and effectiveness of our proposed model compared with the state-of-the-art methods.

格式:
文章
A Cost-Efficient Approach to Storing Users' Data for Online Social Networks

As users increasingly befriend others and interact online via their social media accounts, online social networks (OSNs) are expanding rapidly. Confronted with the big data generated by users, it is imperative that data storage be distributed, scalable, and cost-efficient. Yet one of the most significant challenges about this topic is determining how to minimize the cost without deteriorating system performance. Although many storage systems use the distributed key value store, it cannot be directly applied to OSN storage systems. And because users' data are highly correlated, hash storage leads to frequent inter-server communications, and the high inter-server traffic costs decrease the OSN storage system's scalability. Previous studies proposed conducting network partitioning and data replication based on social graphs. However, data replication increases storage costs and impacts traffic costs. Here, we consider how to minimize costs from the perspective of data storage, by combining partitioning and replication. Our cost-efficient data storage approach supports scalable OSN storage systems. The proposed approach co-locates frequently interactive users together by conducting partitioning and replication simultaneously while meeting load-balancing constraints. Extensive experiments are undertaken on two realworld traces, and the results show that our approach achieves lower cost compared with state-of-the-art approaches. Thus we conclude that our approach enables economic and scalable OSN data storage.

格式:
文章
基于SSD和时序模型的微博好友推荐算法

社交网络用户的指数型增长,导致用户在网络中难以找到适合自己的好友。提出一种基于多目标检测算法SSD和时序模型的微博好友推荐算法BSBT-FR,首先利用SSD对搜集到的用户图像进行信息提取,再利用时序模型在时间维度上对提取到的信息做进一步处理,然后利用JS散度公式计算用户间的相似度,最后与基于用户个人信息得出的相似度进行加权式融合,得出综合的用户相似度,使用Top-K思想进行用户推荐。在新浪微博用户数据集上的实验表明,参考因素的权重取值会影响推荐结果,BSBT-FR算法与只考虑用户属性或用户图像的算法相比,精准度更高。

格式:
文章
基于注意力门控神经网络的社会化推荐算法

针对社会化推荐算法中存在的推荐准确率不高的问题,提出了一种多头注意力门控神经网络(MAGN)算法。具体来说,采用门控神经网络对输入的用户和用户-朋友对进行融合得到联合嵌入,利用注意力记忆网络来获取不同朋友在不同方面对用户的影响,利用多头注意力来获取在不同方面对用户影响程度偏高的几位朋友。采用门控神经网络将朋友影响和用户自身兴趣偏好进行混合,继而基于混合兴趣偏好对项目进行推荐。在两个公开真实数据集上进行实验进一步验证了所提方法的有效性。

格式:
文章
融合物品信息的社会化推荐算法

大多数社会化推荐算法仅考虑约束用户的特征向量并未限制物品的特征向量对推荐系统性能的影响,针对这一问题,提出了一种融合物品信息的社会化推荐算法。该算法先通过用户与物品的交互图构建物品相似性网络,在此基础上采用随机游走和SkipGram的方法构造出隐性物品相似性网络,再通过图神经网络的方法学习物品隐性相似性网络、社交网络和用户物品交互图,得到用户和物品编码的特征向量,最后在矩阵分解的基础上同时对用户和物品的特征向量做进一步约束,采用迭代更新的方式获取用户和物体最终的特征向量。为验证推荐算法的性能,在FilmTrust、Ciao和Douban数据集上进行实验验证。实验结果表明,所提出的ISGCF算法与经典的推荐算法相比,推荐效果更好,有效地缓解了冷启动问题。

格式:
文章
结合重要节点信任传播的社会化推荐算法

融合社交信息的推荐算法有效缓解了推荐算法中的数据稀疏性问题和冷启动问题,近年来受到极大的关注。但社交信息依然存在数据稀疏性问题,而且社交网络提供的二值数据无法衡量不同用户间的信任程度。针对这些问题,利用重启随机游走算法获取社交网络中的重要节点。提出重要节点信任传播算法建立重要节点和其他用户节点之间的信任关系,同时利用节点的结构信息进一步量化用户间的信任权重,以得到更精确的推荐结果。在三个公开数据集上的实验表明,结合重要节点信任传播的社会化推荐算法(INTP-Rec)丰富了社交信息,有效地提高了推荐算法的准确率和召回率。

格式:
文章
融合社交网络用户潜在因子的社会化推荐

针对传统社会化推荐准确率不高的问题,提出一种融合社交网络用户潜在因子的推荐算法SGCN-MF。SGCN-MF考虑社交网络中用户的隐语义信息对推荐结果的影响。使用图卷积神经网络将用户-项目历史交互信息和用户社交网络进行编码嵌入,学习得到具有用户特征和网络结构信息的节点在低维向量空间的潜在特征表达;将用户潜在因子融入基于矩阵分解的社会化推荐模型中;使用梯度下降算法训练模型参数。在Filmtrust、Ciao和Epinions数据集上的实验表明,与传统的社会化推荐算法相比,SGCN-MF能够提升推荐的准确率。

格式:
文章
结合改进差分进化和模块密度的社区发现算法

社区发现是个性化推荐、群体特征归集、社会网络分析等领域研究的基础与核心,而现有社区发现算法在处理日益复杂的社会网络时,存在准确性不高、收敛速度慢、模块度分辨率受限等问题。为此,将差分进化和模块密度思想引入社区发现中,提出了一种结合改进差分进化和模块密度的社区发现算法。该算法首先调整差分进化的变异策略和参数,再将模块密度作为适应度函数以克服模块度分辨率限制;然后根据社区结构进行修正操作,以提高种群中的个体质量,加快全局收敛速度。在计算机生成网络数据集及5个具有代表性的真实世界网络数据集上,与多个应用较为广泛的社区发现算法进行对比实验。实验结果表明所提算法具有更高的准确性和更优的收敛性能。

格式:
文章

计算社会科学

面向超大规模社会系统仿真的概念模型

超大规模基于智能体的社会仿真正逐渐被证明是研究人类社会的一种有效方法,它可以为社会科学中的决策、计算机科学中的分布式人工智能和智能体技术、计算机仿真系统的理论和建模实践等领域作出贡献。然而,现有的研究实践在平衡模型复杂度和仿真性能方面存在一定的困难。针对目前存在的问题,提出了一种基于智能体和大数据驱动的超大规模社会仿真概念模型框架,提供了模型组件的参考实现,并以超大规模人工城市疫情预测与控制为例,说明了如何利用所提概念框架对具有复杂人类行为和社会交互的超大规模社会系统进行建模,同时也指出了在其他社会科学领域的潜在应用,如微观交通系统和城市疏散规划。

格式:
文章
面向社会计算的集成建模方法与应用系统

复杂社会系统建模是社会计算面临的首要问题。面向社会计算领域的建模流程与需求,提出了一种模型深度集成架构,称为POV框架。该框架由物理层、覆盖层和虚拟层3部分组成,提供了模型的组织、表达和集成方法。基于该方法搭建了面向社会计算数据模型交互共享集成平台,为研究者们提供包括数据资源、分析工具和建模仿真计算环境的社会计算实验平台。应用示例证明了该平台能够为研究者进行社会计算研究提供有效支撑。

格式:
文章
An Efficient Two-Phase Model for Computing Influential Nodes in Social Networks Using Social Actions

The measurement of influence in social networks has received a lot of attention in the data mining community. Influence maximization refers to the process of finding influential users who make the most of information or product adoption. In real settings, the influence of a user in a social network can be modeled by the set of actions (e.g., "like", "share", "retweet", "comment") performed by other users of the network on his/her publications. To the best of our knowledge, all proposed models in the literature treat these actions equally. However, it is obvious that a "like" of a publication means less influence than a "share" of the same publication. This suggests that each action has its own level of influence (or importance). In this paper, we propose a model (called Social Action-Based Influence Maximization Model, SAIM) for influence maximization in social networks. In SAIM, actions are not considered equally in measuring the "influence power" of an individual, and it is composed of two major steps. In the first step, we compute the influence power of each individual in the social network. This influence power is computed from user actions using PageRank. At the end of this step, we get a weighted social network in which each node is labeled by its influence power. In the second step of SAIM, we compute an optimal set of influential nodes using a new concept named "influence-BFS tree". Experiments conducted on large-scale real-world and synthetic social networks reveal the good performance of our model SAIM in computing, in acceptable time scales, a minimal set of influential nodes allowing the maximum spreading of information.

格式:
文章
Who Should Be Invited to My Party: A Size-Constrained k-Core Problem in Social Networks

In this paper, we investigate the problem of a size-constrained k-core group query (SCCGQ) in social networks, taking both user closeness and network topology into consideration. More specifically, SCCGQ intends to find a group of h users that has the highest social closeness while being a k-core. SCCGQ can be widely applied to event planning, task assignment, social analysis, and many other fields. In contrast to existing work on the k-core detection problem, which aims to find a k-core in a social network, SCCGQ not only focuses on k-core detection but also takes size constraints into consideration. Although the conventional k-core detection problem can be solved in linear time, SCCGQ has a higher complexity. To solve the problem of SCCGQ, we propose a Blast Scatter (BS) algorithm, which appoints the query node as the center to begin outward expansions via breadth search. In each outward expansion, BS finds a new center through a greedy strategy and then selects multiple neighbors of the center. To speed up the BS algorithm, we propose an advanced search algorithm, called Bounded Extension (BE). Specifically, BE combines an effective social distance pruning strategy and a tight upper bound of social closeness to prune the search space considerably. In addition, we propose an offline social-aware index to accelerate the query processing. Finally, our experimental results demonstrate the efficiency and effectiveness of our proposed algorithms on large real-world social networks.

格式:
文章

计算传播

基于抖音共同联系人的群体用户关系分析

很多流行的社交App都有展示用户之间的共同关系的功能,然而,共同关系的暴露也可能导致用户隐私安全问题的发生.以中国最知名的短视频软件抖音为研究对象,分析了其共同联系人功能存在的用户隐私泄露的安全漏洞.提出了一种针对群体用户的漏洞利用和攻击方式,该攻击方式可以达到的效果是,即使群体中某些用户设置了不允许通过手机号找到自己,攻击者仍然可以利用已知的群体用户的手机号码和群体用户之间的内在联系获得这些用户的抖音账号.攻击者在获得群体中尽可能多的用户的抖音账号后,可以对这些用户相互之间的关注信息、通信录信息、视频点赞和评论信息进行收集,并利用这些信息计算群体用户之间的关系,为发起进一步的有效攻击提供一定的辅助.提出了描述用户关系的2个指标——亲密度和群体活跃度,并给出了这2个指标的计算方法.通过对现实社会中3个真实群体的实验,验证了用户关系计算的有效性,分析了对用户所造成的安全威胁,并给出了安全防范建议.

格式:
文章
社交网络信息传播预测与特定信息抑制

近年来,随着Twitter、Facebook、新浪微博等社交网站用户数量的激增,信息数量急剧膨胀,隐藏在海量信息中的不实信息的传播带来了不良的影响,如何调控或抑制特定信息的传播是网络信息管理面临的一项技术挑战.为了解决这一问题,首先从真实微博网络出发,基于机器学习方法提出了不依赖于传播模型的独立信息转发预测机制,从而对信息的传播进行预测;其次,基于独立级联模型,综合考虑本文场景的特殊性,提出了异步信息不平等竞争传播模型作为特定信息与免疫信息的竞争传播机制;最后,提出了3个种子节点集合选择算法,通过向选择的种子节点注入免疫信息使得免疫信息在网络中广泛传播从而抑制特定信息的传播.基于真实社交网站数据的实验证明,提出的信息传播预测模型以及种子节点选取算法对特定信息传播的调控和抑制具有良好的效果.

格式:
文章
新冠疫情相关社交媒体谣言传播量化分析

新冠肺炎疫情的爆发伴随着大量的谣言在社交媒体平台传播,对网络秩序和社会稳定产生了不良影响.已有的疫情相关社交媒体谣言传播量化分析研究仅对谣言内容等单一传播要素展开分析,而忽略了构成信息传播的其他基础要素,包括传播者、受众以及传播效果等.同时,这些研究的谣言数据与真实的社交媒体谣言数据也存在分布偏差和信息缺失.因此,基于新浪微博平台对新冠疫情相关社交媒体谣言的传播展开更加全面的量化分析.具体而言,首先对谣言传播内容进行分析,包括其主题分析、涉及地区分析、事件倾向性分析以及情感分析;进一步对谣言参与用户进行分析,将参与用户分为3类:造谣者、传谣者和辟谣者,并分别对其基础属性、关注主题、个体情绪以及自网络属性进行探究;最后对谣言引发舆情进行分析,探究其情感的整体分布、与主题、关键词和地区的关系、以及情感的演变规律.该研究首次从信息传播的各个基础要素层面对疫情相关的社交媒体谣言传播展开量化分析,不仅对新冠肺炎疫情相关谣言传播有了更全面深刻的认识,同时对突发公共事件的谣言研究和谣言治理也具有十分重要的价值.

格式:
文章
社会网络节点影响力分析研究

社会网络节点影响力研究是社会网络分析的关键问题之一.过去的 10 多年间,随着在线社会网络的快速发展,研究人员有机会在大量现实社会网络上对影响力进行分析和建模,并取得了丰硕的研究成果和广泛的应用价值.分析和总结了近年来社会网络影响力分析的主要成果.首先介绍了节点影响力的相关定义、作用范围以及表现形式;接着,重点分类介绍了节点影响力的度量方法,通过网络拓扑、用户行为和内容分析这 3 类方法总结了影响力的建模和度量方法;然后总结了影响力的传播和最大化模型相关成果;最后介绍了影响力的评价指标和应用.根据对现有方法的系统总结,对社会网络影响力的未来研究提出了一些值得关注的方向.

格式:
文章
移动社会网络中基于全局信任模型的用户影响力计算

针对现有算法和模型对于网络中用户影响力计算大多只考虑拓扑结构和贪心算法而较少考虑真实社会网 络中信任度对于节点影响力的重要性这一问题, 该文提出一种全局信任模型 (global trust model, GTM) 用于评估节 点的影响力. 首先计算节点与邻居节点间的信任关系作为局部信任度, 其次利用 Beta 信誉模型在节点局部信任度 的基础上得到全局信任度, 最后根据节点的全局信任度评估节点的影响力大小. 在真实的网络数据集上对该模型与 经典影响力算法进行实验对比, 结果表明, 该文提出的方法不仅具有更低的时间复杂度, 并且在保证节点可信度与 精确度的同时也具有良好的影响传播能力

格式:
文章
Location and Trajectory Identification from Microblogs

The rapid development of social networks has resulted in a proliferation of user-generated content (UGC), which can benefit many applications. In this paper, we study the problem of identifying a user's locations from microblogs, to facilitate effective location-based advertisement and recommendation. Since the location information in a microblog is incomplete, we cannot get an accurate location from a local microblog. As such, we propose a global location identification method, Glitter. Glitter combines multiple microblogs of a user and utilizes them to identify the user's locations. Glitter not only improves the quality of identifying a user's location but also supplements the location of a microblog so as to obtain an accurate location of a microblog. To facilitate location identification, Glitter organizes points of interest (POIs) into a tree structure where leaf nodes are POIs and non-leaf nodes are segments of POIs, e.g., countries, cities, and streets. Using the tree structure, Glitter first extracts candidate locations from each microblog of a user which correspond to some tree nodes. Then Glitter aggregates these candidate locations and identifies top-k locations of the user. Using the identified top-k user locations, Glitter refines the candidate locations and computes top-k locations of each microblog. To achieve high recall, we enable fuzzy matching between locations and microblogs. We propose an incremental algorithm to support dynamic updates of microblogs. We also study how to identify users' trajectories based on the extracted locations. We propose an effective algorithm to extract high-quality trajectories. Experimental results on real-world datasets show that our method achieves high quality and good performance, and scales well.

格式:
文章

隐私计算与安全

政务大数据安全防护能力建设:基于技术和管理视角的探讨

政务大数据是新时期数字政府建设的核心资产,对推动政府功能服务升级和经济、社会创新发展具有重要意义。但在复杂的网络流通环境下,为了保障政务大数据的合理、有序和可靠利用,其数据安全防护能力建设不容忽视。在技术层面,政务大数据安全防护涉及网络安全(Network Security)、平台安全(Platform Security)和应用安全(Application Security)等核心要素;在管理层面,政务大数据安全防护则需要重点关注人员素养(Personnel Quality)和制度质量(Institutional Quality)这两方面的内容。在理论探讨的基础上,给出了具体的技术和管理能力指标,并进一步对省级机关单位的建设实践进行了分析。

格式:
文章
社交网络用户隐私泄露量化评估方法

社交网络用户隐私泄露的量化评估有利于帮助用户了解个人隐私泄露状况,提高公众隐私保护和防范意识,同时也能为个性化隐私保护方法的设计提供依据。针对目前隐私量化评估方法主要用于评估隐私保护方法的保护效果,无法有效评估社交网络用户的隐私泄露风险的问题,提出了一种社交网络用户隐私泄露量化评估方法。基于用户隐私偏好矩阵,利用皮尔逊相似度计算用户主观属性敏感性,然后取均值得到客观属性敏感性;采用属性识别方法推测用户隐私属性,并利用信息熵计算属性公开性;通过转移概率和用户重要性估计用户数据的可见范围,计算数据可见性;综合属性敏感性、属性公开性和数据可见性计算隐私评分,对隐私泄露风险进行细粒度的个性化评估,同时考虑时间因素,支持用户隐私泄露状况的动态评估,为社交网络用户了解隐私泄露状况、针对性地进行个性化隐私保护提供支持。在新浪微博数据上的实验结果表明,所提方法能够有效地对用户的隐私泄露状况进行量化评估。

格式:
文章
社会网络中基于节点平均度的k-度匿名隐私保护方案

<p>:社会网络数据的发布可能导致用户隐私被泄露, 例如用户的身份信息可能被恶意攻击者通过分析网络中节 点的度数识别出来, 针对这个问题提出一种基于节点平均度的 k-度匿名隐私保护方案. 方案首先利用基于平均度 的贪心算法对社会网络节点进行划分, 使得同一分组中节点的度都修改成平均度, 从而生成 k-度匿名序列; 然后利 用优先保留重要边的图结构修改方法对图进行修改, 从而实现图的 k-度匿名化. 本方案在生成 k-度匿名序列时引 入平均度, 提高了聚类的精度, 降低了图结构修改的代价. 同时, 由于在图结构修改时考虑了衡量边重要性的指标 —邻域中心性, 重要的边被优先保留, 保持了稳定的网络结构. 实验结果表明, 本方案不仅能有效地提高网络抵抗度 攻击的能力, 还能极大降低信息损失量, 在保护用户隐私的同时提高了发布数据的可用性.</p>

格式:
文章

本期编委成员

李亚辉

《计算机科学》编辑部主任

侯丽珊

《计算机研究与发展》编辑部主任

舒风笛

《Journal of Computer Science and Technology》编辑部主任

胡慧俐

《计算机工程与科学》编辑部主任

袁璟

《计算机科学与探索》编辑部副总编辑

祁丽娟

《软件学报》编辑部副主任 

往期回顾