High Performance Graph Engine: New Application and Architecture Opportunities

System Research Group, MSR-Asia In collaboration with MSR-SVC

Motivation

- Tremendous increase in graph data and apps
 - Graph mining on web graph and social network
 - Real-time graph query, e.g., knowledge graph

- Opportunities for research on graph engine
 - New scenario: analysis on a fast changing graph
 - Multicore server: graph-aware optimization

• Kineograph: taking the pulse of a fast-changing and connected world (Eurosys'12)

• Grace: managing large graphs on multi-cores with graph awareness (USENIX ATC'12)

Kineograph Background

The age of real-time data – 8⁺ 3⁻

- New time-sensitive data generated continuously
- Rich connections between entities
- Example: mention graph

Goal: Compute Global Properties on the **Changing Graph**

System Challenges

- High rate of graph updates
- Consistent graph data
- Static graph algorithm vs. changing graph
- Timely results reflecting graph updates
- Fault tolerant

Kineograph: In-Memory Graph Store

Scalable and fault-tolerant distributed system for nearline graph mining

- Built-in support for incremental computation ^{1/1}/^{1/1}/^{1/1}/^{1/1}/^{1/1}/^{1/1}
 - Kineograph API for various graph algorithms
 - Examples:
 - InfluenceRank
 - Approximate all-pairs shortest paths
 - K-exposure (hash-tag histogram)
- Epoch commit protocol
 - Fast graph update and consistent snapshot production
 - Static graph algorithm operating over a snapshot

Graph Update/Compute Pipeline

- Multiple parallel data sources
- Graph update in transaction
 - E.g., tweet \rightarrow updates of multiple edges/vertices, cross-partition operations
- Produce a consistent global snapshot periodically

System Architecture

Key decision: **separation** of graph construction from graph computation

- Give rise to the epoch commit protocol
- Enable simple and separate fault tolerant mechanisms for graph update (quorumbased replication) and graph computation (check-point and primary backup)

Incremental Graph Computation

Vertex-based iterative propagation

Selected Results

- Graph update rate
 - 180k tweet/s: 20x+ of Twitter peak record (Oct.2011)
- Incremental Computation

Contributions

• Kineograph

- A system that computes timely results on a fast changing graph
- Separate graph update mechanism that supports high-throughput graph update and produces consistent snapshots
- An efficient graph engine that supports incremental computation
- Implementation validates design goals
 - 100k+ sustainable update throughput and 2.5-minute timeliness with 40 machines

Grace

- A graph management and processing system
 - In-memory, single machine
 - Graph-specific and multicore-specific optimizations
- Orders of magnitude faster than existing systems
 Berkeley DB, SQL-server, and Neo4j

An Overview of Grace

Graph-Aware Data Structures

Data Structures in a Partition

- Efficient, no indirect key-value lookup when following edges
- Enable graph-aware optimization on data locality

Graph-Aware Partitioning & Placement

- Partitioning
 - Decrease cross-core communication & increase parallelism
 - Heuristic-based:
 - place v in a partition with more neighbors while balancing # of vertex across partitions, i.e., for each v, minimize |Partition_i\Neighbor_i(v)|
 - Provides an extensible library
 - Metis, hash partitioning
- Placement
 - Better data locality: Place tightly connected vertices close
 - likely w/in one page and even CPU cache-line (during computation)
 - Spectral rearrange:
 - giving highly connected vertices similar score
 - arrange vertices in the order sorted by score

BSP (bulk synchronous parallel) model

• Update Batching

Comparing Grace, BDB, and Neo4j

Orders of magnitude faster than existing alternatives

Conclusion

- Grace explores graph-specific and multi-core specific optimizations
- Careful vertex placement in memory gave good improvements
- Partitioning and updates batching worked in most cases, but not always

Backup

Kineograph Fault Tolerance

- Ingest node failure
 - Each ingest node *i* assigns an *incarnation* number along with each tx no. [c_i, s_i] and marks it in the global progress table
 - A resurrected ingest node *i* seals c_i at s_i, and uses new incarnation number c_i+1: any op [c_i, s] (s > s_i) is discarded
- Graph node failure
 - Graph data : quorum-based replication, i.e., graph updates sent to k replicas and can tolerate f failures (k >= 2f+1)
 - No replication during computation: rollback and re-compute; computation results are replicated using primary backup
- Others: Paxos-based solution
 - Maintain progress table, coordinate computation, monitor machines, tracking replicas, etc.

Evaluation

- System implementation
 - Platform LoC: 16K~ C#
 - 3 Apps LoC: 1.5K[~] C# (Influence Rank, approximate allpair shortest path, hashtag-histogram)
 - 40+ servers, ~100M tweets
- Key performance numbers
 - Graph update rate: up to 180K tweets/s, 20+ times more than Twitter peak record (Oct.2011)
 - Influence Rank average timeliness over 8M vertices, 29M edges: ~2.5 minute

Failure Recovery

Programming with Kineograph

UpdateInfluence (v) { //event handling callback for a vertex val newRank = (1+p*v["influence"]) / v.numOutEdges() foreach(e in vertex.outEdges()) { val oldRank = v.("influence", e.target) val delta = |newRank – oldRank| if (delta > threshold) v.pushDeltaTo("influence", e.target, delta) } //pushDeltaTo propagates changes to other vertices } //UpdateInfluence() triggered at changed vertices only

Snapshot Consistency

- Guarantee atomicity
 - All or none of the operations in a tx are included in a snapshot
- Global tx vector
 - A consensus on the set of tx to be included in a global snapshot
- Applying graph updates
 - Impose an artificial order within the set of tx: e.g., apply ops of s_1 first, and s_2 , and so on.
 - Assumption: cross-partition ops do not have causal dependency

Applications

- Graph construction by extracting tweets
 - Mention graph: A @ B: A->B
 - HashTag graph: U posts a tweet that has #tagA: U->tagA
- Influence Rank: computing user influence
 - Calculate "PageRank" on a mention graph
- Approximate shortest paths
 - Shortest path between two vertices S(A,B): S(A, LandmarkA)+S(B, LandmarkB)
- K-Exposure: calculating hashtag exposure histogram (WWW'11)
 - If at time t user U posts a tweet S containing hash tag H, K(S) is the number of U's neighbors who post tweets containing H before t

Why focus on single machine?

- Single machine scale increases largely
 - Large main memory attached (10s~1000s GB)
 - Many cores (12~48, and even more)
 - Run workloads that are traditionally run on distributed systems
- Easy to deploy
 - No tricky distributed configurations
- Distributed graph system needs efficient local engine

Evaluation

Graphs:

- Web (v:88M, e:275M), sparse
- Orkut (v:3M, e:223M), dense

Workloads:

 N-hop-neighbor queries, BFS, DFS, PageRank, Weakly-Connected Components, Shortest Path

Architecture:

- Intel Xeon-12 cores, 2 chips with 6 cores each
- AMD Opteron-48 cores, 4 chips with 12 cores each

Questions:

- How well partitioning and placement work?
- How useful are load balancing and updates batching?
- How does Grace compare to other systems?