
High Performance Graph Engine: New
Application and Architecture Opportunities

System Research Group, MSR-Asia

In collaboration with MSR-SVC

Motivation

• Tremendous increase in graph data and apps

– Graph mining on web graph and social network

– Real-time graph query, e.g., knowledge graph

• Opportunities for research on graph engine

– New scenario: analysis on a fast changing graph

– Multicore server: graph-aware optimization

2

• Kineograph: taking the pulse of a fast-changing
and connected world (Eurosys’12)

• Grace: managing large graphs on multi-cores
with graph awareness (USENIX ATC’12)

3

Kineograph Background

• The age of real-time data –

– New time-sensitive data generated continuously

– Rich connections between entities

• Example: mention graph

4

You should see this
@bob @carol

Alice:

Alice

Bob Carol

3 1
… …

2

Goal: Compute Global
Properties on the
Changing Graph

System Challenges

• High rate of graph updates

• Consistent graph data

• Static graph algorithm vs. changing graph

• Timely results reflecting graph updates

• Fault tolerant

5

Kineograph: In-Memory Graph Store

Scalable and fault-tolerant distributed
system for nearline graph mining
• Built-in support for incremental computation

– Kineograph API for various graph algorithms
– Examples:

• InfluenceRank
• Approximate all-pairs shortest paths
• K-exposure (hash-tag histogram)

• Epoch commit protocol
– Fast graph update and consistent snapshot production
– Static graph algorithm operating over a snapshot

6

Zeitgenossische
Illustration (1886)

file://localhost/upload.wikimedia.org/wikipedia/commons/1/1f/Linnet_kineograph_1886.jpg

Graph Update/Compute Pipeline

7

Graph
Computation

Snapshot
Construction

Incoming
Tweets … …

Si-1 Si Si+1

Ci

ti-1

Time

ti ti
’

ti
’’

Epoch

Timeliness

• Multiple parallel data sources

• Graph update in transaction
– E.g., tweet updates of multiple edges/vertices, cross-partition operations

• Produce a consistent global snapshot periodically

System Architecture

Graph
nodes

Ingest
nodes

Continuous
Data feeds

Global consistent snapshots

Incremental computation on a
static graph snapshot

Progress
table

 Snapshooter

Graph Storage

Computation

 Master

Key decision: separation of graph construction from graph computation

• Give rise to the epoch commit protocol

• Enable simple and separate fault tolerant mechanisms for graph update (quorum-
based replication) and graph computation (check-point and primary backup) 8

…

…

Epoch Commit Protocol

s1

4 6 7

1 2 4 s1

sn

Partition u

5 6 8

2 3 5 s1

sn

Partition v

0

…

s1

…

sn 3

Progress table

Ingest nodes

Graph nodes Epoch specified by progress
table and snapshooter

Global tx
vector

Snapshooter
sn

…

…

1 2 3

4 7
• No locking mechanisms required for global order
• Defer decisions to master snapshooter

• Consensus on a set of ops and a serializable execution order

• Limitation: no cross-partition dependency across ops

9

Incremental Graph Computation

Detect Vertex
Status

Compute New
Vertex Values

Propagate
Updates

Graph-Scale
Aggregation

Change
Significantly?

Init

Updates from
other vertices

Y

N

Vertex-based iterative propagation

10

Selected Results

• Graph update rate

– 180k tweet/s: 20x+ of Twitter peak record (Oct.2011)

• Incremental Computation

11

Contributions

• Kineograph
– A system that computes timely results on a fast

changing graph
– Separate graph update mechanism that supports

high-throughput graph update and
produces consistent snapshots

– An efficient graph engine that supports
incremental computation

• Implementation validates design goals
– 100k+ sustainable update throughput and 2.5-minute

timeliness with 40 machines

12

Grace

• A graph management and processing system

– In-memory, single machine

– Graph-specific and multicore-specific
optimizations

• Orders of magnitude faster than existing systems

– Berkeley DB, SQL-server, and Neo4j

13

v = GetVertex(Id)
for (i=0; i<v.degree;i++)
 neigh=v.GetNeighbor(i)

Grace API

Core 0 Core 1

A

B

D

C E

Iterative Programs
(e.g., PageRank)

Graph and Multi-core Optimizations

An Overview of Grace

Memory

14

Graph-Aware Data Structures

V1

E12

Vertex Array

Edge Array

Data Structures in a Partition

V2 V3 ...

E13 E23 E26

Edges of V1 Edges of V2

…

• Efficient, no indirect key-value lookup when following edges

• Enable graph-aware optimization on data locality

Part 0 Part 1

15

Graph-Aware Partitioning & Placement

• Partitioning
– Decrease cross-core communication & increase parallelism

– Heuristic-based:

• place v in a partition with more neighbors while balancing # of vertex across
partitions, i.e., for each v, minimize |Partitioni\ Neighbori(v)|

– Provides an extensible library

• Metis, hash partitioning

• Placement
– Better data locality: Place tightly connected vertices close

• likely w/in one page and even CPU cache-line (during computation)

– Spectral rearrange:

• giving highly connected vertices similar score

• arrange vertices in the order sorted by score

16

Platform for Parallel Iterative Computations

BSP (bulk synchronous parallel) model

V1 V2 V3 V4 V5 V6 V7 V8

V’1 V’2 V’3 V’4 V’5 V’6 V’7 V’8

Iteration 0

Iteration 1

Core 0, Part 0 Core 1, Part 1

cache line

17

Platform for Parallel Iterative Computations

V1 V2 V3 V4 V5 V6 V7 V8

V’1 V’2 V’3 V’4 V’5 V’6 V’7 V’8

Iteration 0

Iteration 1

Core 0, Part 0 Core 1, Part 1

cache line

1 2 3
4

18

Platform for Parallel Iterative Computations

V1 V2 V3 V4 V5 V6 V7 V8

V’1 V’2 V’3 V’4 V’5 V’6 V’7 V’8

Iteration 0

Iteration 1

Core 0, Part 0 Core 1, Part 1

cache line

1 2 3 4

19

Platform for Parallel Iterative Computations

• Update Batching

V1 V2 V3 V4 V5 V6 V7 V8

V’1 V’2 V’3 V’4 V’5 V’6 V’7 V’8

Iteration 0

Iteration 1

Core 0, Part 0 Core 1, Part 1

cache line

20

Comparing Grace, BDB, and Neo4j

0.1

1

10

100

1000

10000

BDB

Neo4j

Grace R
u

n
n

in
g

Ti
m

e
 (

s)

Orders of magnitude faster than existing alternatives

21

Conclusion

• Grace explores graph-specific and multi-core
specific optimizations

• Careful vertex placement in memory gave
good improvements

• Partitioning and updates batching worked in
most cases, but not always

22

Backup

23

Kineograph Fault Tolerance

• Ingest node failure

– Each ingest node i assigns an incarnation number along with each tx no. [ci, si]
and marks it in the global progress table

– A resurrected ingest node i seals ci at si, and uses new incarnation number
ci+1: any op [ci, s] (s > si) is discarded

• Graph node failure

– Graph data : quorum-based replication, i.e., graph updates sent to k replicas
and can tolerate f failures (k >= 2f+1)

– No replication during computation: rollback and re-compute; computation
results are replicated using primary backup

• Others: Paxos-based solution

– Maintain progress table, coordinate computation, monitor machines, tracking
replicas, etc.

24

Evaluation

• System implementation
– Platform LoC: 16K~ C#

– 3 Apps LoC: 1.5K~ C# (Influence Rank, approximate all-
pair shortest path, hashtag-histogram)

– 40+ servers, ~100M tweets

• Key performance numbers
– Graph update rate: up to 180K tweets/s, 20+ times

more than Twitter peak record (Oct.2011)

– Influence Rank average timeliness over 8M vertices,
29M edges: ~2.5 minute

25

Failure Recovery

 0

 20

 40

 60

 80

 100

 200 250 300 350 400 450 500 550 600T
h
r
o
u
g
h
p
u
t

(
k
t
p
s

Throughput

 0
 20
 40
 60
 80

 100
 120

 200 250 300 350 400 450 500 550 600T
i
m
e
l
i
n
e
s
s

(
s
)

Time (s)

t0

t1 Timeliness

26

Programming with Kineograph

UpdateInfluence (v) { //event handling callback for a vertex

 val newRank = (1+p*v*“influence"+) / v.numOutEdges()

 foreach(e in vertex.outEdges()) {

 val oldRank = v.(”influence", e.target)

 val delta = |newRank – oldRank|

 if (delta > threshold)

 v.pushDeltaTo(“influence", e.target, delta)

 } //pushDeltaTo propagates changes to other vertices

} //UpdateInfluence() triggered at changed vertices only

27

Snapshot Consistency

• Guarantee atomicity
– All or none of the operations in a tx are included in a

snapshot

• Global tx vector
– A consensus on the set of tx to be included in a global

snapshot

• Applying graph updates
– Impose an artificial order within the set of tx: e.g.,

apply ops of s1 first, and s2, and so on.
– Assumption: cross-partition ops do not have causal

dependency

28

Applications

• Graph construction by extracting tweets

– Mention graph: A @ B: A->B

– HashTag graph: U posts a tweet that has #tagA: U->tagA

• Influence Rank: computing user influence

– Calculate “PageRank” on a mention graph

• Approximate shortest paths

– Shortest path between two vertices S(A,B): S(A, LandmarkA)+S(B,
LandmarkB)

• K-Exposure: calculating hashtag exposure histogram (WWW’11)

– If at time t user U posts a tweet S containing hash tag H, K(S) is the
number of U’s neighbors who post tweets containing H before t

29

Why focus on single machine?

• Single machine scale increases largely

– Large main memory attached (10s~1000s GB)

– Many cores (12~48, and even more)

– Run workloads that are traditionally run on distributed
systems

• Easy to deploy

– No tricky distributed configurations

• Distributed graph system needs efficient local engine

30

Graphs:
- Web (v:88M, e:275M), sparse
- Orkut (v:3M, e:223M), dense

Workloads:
- N-hop-neighbor queries, BFS, DFS, PageRank, Weakly-

Connected Components, Shortest Path

Architecture:
- Intel Xeon-12 cores, 2 chips with 6 cores each
- AMD Opteron-48 cores, 4 chips with 12 cores each

Questions:
- How well partitioning and placement work?
- How useful are load balancing and updates batching?
- How does Grace compare to other systems?

Evaluation

31

