刘偲-图像的像素级语义理解
[视频介绍]
简介:近年来,基于深度学习的图像视频分析技术取得了巨大成功。相比于传统的物体分类识别技术,图像的像素级语义理解,又称语义分割,能提供更加丰富的像素级信息, 因而成为一个新的研究热点。本报告以语义分割的三个典型实例,即场景解析,人脸解析以及人像解析为切入点,重点介绍我们针对语义分割的以下两个挑战做出的工作。1:减少人工标注工作量:在很多实用场景中,图像尺寸大且标签种类繁多,纯人工逐像素标注非常昂贵且低效。我们提出一系列在不降低算法精度的前提下,极大减少人工标注成量的无监督、半监督、弱监督语义分割算法。2:提升分割精度: 通过综合考虑上下文信息,如语义标签之间的共生性和互斥性,不同信息源的互补性,极大地改进了分割精度。最后,我们也将展示语义分割在智能相机、视频监控、智能家居、电商平台搜索等多个领域的应用效果。
视频介绍
讲师:刘偲
关键词:
课程简介:近年来,基于深度学习的图像视频分析技术取得了巨大成功。相比于传统的物体分类识别技术,图像的像素级语义理解,又称语义分割,能提供更加丰富的像素级信息, 因而成为一个新的研究热点。本报告以语义分割的三个典型实例,即场景解析,人脸解析以及人像解析为切入点,重点介绍我们针对语义分割的以下两个挑战做出的工作。1:减少人工标注工作量:在很多实用场景中,图像尺寸大且标签种类繁多,纯人工逐像素标注非常昂贵且低效。我们提出一系列在不降低算法精度的前提下,极大减少人工标注成量的无监督、半监督、弱监督语义分割算法。2:提升分割精度: 通过综合考虑上下文信息,如语义标签之间的共生性和互斥性,不同信息源的互补性,极大地改进了分割精度。最后,我们也将展示语义分割在智能相机、视频监控、智能家居、电商平台搜索等多个领域的应用效果。